
COMP283-Lecture	9 

Applied	Database	Management

Introduction

DB	Linking MySQL	Federated	Storage	
Engine

Migration Reminder:	Views	and	Stored	
Procedures

	 Manual	Migration

�1

COMP283-Lecture	9 

DB	Linking:	MySQL	Federated	Storage	Engine
● Database	Linking	in	MySQL	is	via	MySQL’s	Federated	Storage	
Engine.	

● Only	supports	linking	between	MySQL	databases.	
● The	Federated	Storage	Engine	must	be	included	in	the	MySQL	
server	build.	

● When	configured,	it	creates	a	local	table	structure	that	replicates	
the	remote	table.

�2

COMP283-Lecture	9 

DB	Linking:	MySQL	Federated	Storage	Engine
● Steps	to	create	a	Federated	table:	
● Create	a	table	on	the	remote	server	(or	use	existing	table)	
● Create	an	identical	table	on	the	local	server	
● Add	connection	info	to	local	table	to	link	to	remote,	either:	
● Use	a	CONNECTION	statement	with	details	of	remote	server	
connection	

● Use	an	existing	connection	(from	a	CREATE	SERVER	
statement)

�3

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

COMP283-Lecture	9 

DB	Linking:	MySQL	Federated	Storage	Engine

● scheme:	A	recognized	connection	protocol.		
● user_name:	The	user	name	for	the	connection.		
● User	must	have	been	created	on	the	remote	server,	and	must	

have	suitable	privileges	to	perform	the	required	actions	on	the	
remote	table.	

● password:	(Optional)	
● host_name:	The	host	name	or	IP	address	of	the	remote	server.	
● port_num:	(Optional)	The	port	number	for	the	remote	server.		
● db_name:	The	name	of	the	database	holding	the	remote	table.	
● tbl_name:	The	name	of	the	remote	table.

�4

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

COMP283-Lecture	9 

DB	Linking:	MySQL	Federated	Storage	Engine

�5

CREATE TABLE federated_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='mysql://fed_user@remote_host:9306/federated/
test_table';

CREATE SERVER s
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');

CREATE TABLE t (s1 INT) ENGINE=FEDERATED CONNECTION='s';

COMP283-Lecture	9 

DB	Linking:	MySQL	Federated	Storage	Engine
● One	federated	table	can	point	to	another	one	(but	beware	of	
loops)	

● The	local	“copy”	of	the	table	does	not	support	indexes	
● (data	is	actually	handled	remotely	-	remote	table	can	have	

indexes	though)	
● Query	that	requires	a	full	table	scan	will	have	to	retrieve	all	

rows	from	the	remote	server	
● Leads	to	poor	performance	

● Creating	indexes	at	table	creation	time	may	not	be	supported	
● (best	to	create	them	separately)	

● ALTER	TABLE	is	not	supported	
● TRANSACTIONS	not	supported	(though	the	remote	table	can).	
● DROP	TABLE	only	drops	the	local	table	(not	the	remote)

�6

COMP283-Lecture	9	

Stored	Procedures	&	Views	-	reminder

● Views	are	stored	queries.		Treated	like	tables	–	they	can	
be	indexed	and	queried.	

● Views	are	useful	to	restricting	access	to	a	limited	subset	
of	data	attributes	(can	be	across	multiple	tables)	

● Views	are	useful	to	tunnel	through	security.	
● Example	–	create	a	view:	 
CREATE VIEW vwRockMusic AS  
SELECT strArtist, strAlbum, strSong FROM
tblAlbums  
WHERE tblAlbums.Genre = “Rock”;

�7

COMP283-Lecture	9 
Stored	Procedures	&	Views	-	reminder

● Stored	procedures	are	a	sequence	of	executable	SQL	
statements,	compiled	and	saved	within	the	database.	

● A	stored	procedure	is	often	a	saved	query	–	the	difference	
between	a	Stored	Procedure	and	a	view	is	that	the	stored	
procedure	can	have	parameters	passed	to	it	and	is	more	
dynamic.		i.e.	You	can	pass	query	criteria	(WHERE	clause	
parameters)	to	the	stored	procedure.	

● Can	simplify	client	applications	and	avoid	the	need	for	
changes	to	it	if	DB	structure	changes	needed.	How?	

● The	principal*	must	have,	directly	or	inherited,	Execute	
permission	on	the	Stored	Procedure.

�8*user	or	application	program

COMP283-Lecture	9 

Views	and	Stored	Procedures
● Relevant	to	situation	of	merged	databases	
● Both	can	be	used	to	hide	structure	of	db	from	client	
programs	

● Possible	to	make	a	hybrid	db	but	client	applications	see	
original	db	structure	instead

�9

COMP283-Lecture	9 

Migrating	Databases	-	Manual	Migration
● Examine	every	single	table	in	your	DB	schema	
● Find	all	tables	that	can	be	commonly	migrated	
(common	rules,	same	behaviour)	

● Find	all	tables	that	have	some	table-specific	rules	
● Create	backup	dump	
● Create	TODO	list	
● Execute	migration	on	test	server	
● Find	some	ways	to	test	it	
● Execute	migration	production	server

�10

http://blog.brunoraljic.com/how-to-merge-two-mysql-databases-manually-part-1/

COMP283-Lecture	9 

Migrating	Databases	-	Manual	Migration
● Examine	every	single	table	in	your	DB	schema	
● In	order	to	successfully	migrate	your	DB	you’ll	need	
to	know	everything	about	it.	

● Include	indexes,	unique	keys	etc.		
● Involve	more	than	one	person	in	this	phase	if	
possible.		

● Take	longer	doing	the	analysis	so	you	don’t	end	up	
with	errors	during	the	migration	or	(worse	case)	after	
it.

�11

COMP283-Lecture	9 

Migrating	Databases	-	Manual	Migration
● Find	all	tables	that	can	be	commonly	migrated	(common	rules,	
same	behaviour)	
● This	group	is	easier	to	migrate	since	all	you	need	is	to	identify	all	
the	tables	belonging	to	this	group.		

● e.g.	Let’s	say	you	have	tables	products,	orders	and	many	to	many	
table	orders_products.		

● You	have	products	in	both	dbA	and	dbB	databases,	but	those	
products	are	not	the	same,	nor	the	orders	(but	they	can	have	the	
same	ID).	Since	the	product_id	is	unique,	you	can’t	just	simply	
move	products	from	dbB	to	dbA	(error,	duplicate	product_id).	
You	need	to	update	product_id	in	dbB	and	then	move	it	to	dbA.		

● You	need	to	update	product_id	in	both	products	table	and	
orders_products	(and	in	all	other	places	where	you	can	find	
product_id.

�12

COMP283-Lecture	9 

Migrating	Databases	-	Manual	Migration
● Find	all	tables	that	have	some	table-specific	rules	
● Table	users.	Lets	say	you	have	users	in	dbA	and	dbB,	but	some	
of	them	are	the	same	users	(same	person,	same	username	but	
different	user_id).		

● It’s	not	possible	just	to	increment	values	in	user_id	field	and	
move	them	like	in	first	group.	You’ll	end	up	with	duplicate	
users.	You	won’t	be	able	to	do	it	at	all	if	for	example	the	
username	is	unique.		

● For	this	table	you	have	two	rules:	First	you	need	to	take	care	of	
duplicate	users	(adapt	their	user_id	from	one	db	to	another).	
After	that	you	increment	user_id	for	the	other	users	and	move	
them	freely.		

● You	may	have	another	table,	some	configurations	for	example	
where	you	will	need	only	to	adapt	the	values	to	a	new	db.

�13

COMP283-Lecture	9 

Migrating	Databases	-	Manual	Migration
● Create	backup	dump	
● Migration	is	high-risk.	Prepare	backups	of	both	DBs	
just	in	case	

● Create	TODO	list	
● Note	down	every	single	step	you	need	to	perform.	

● Execute	migration	on	test	server	
● Use	fresh	dumps	from	the	main	DB.		
●Watch	for	errors.

�14

COMP283-Lecture	9 

Migrating	Databases	-	Manual	Migration
● Find	some	ways	to	test	it	
● Simple	and	complex	tests.	

● Execute	migration	production	server

�15

COMP283-Lecture	9 

Conclusions
● Talked	about	MySQL	Federated	Storage	Engine	
●Migration	
● Use	of	Views	and	Stored	Procedures	
● Manual	Migration

�16

